Páginas

Pages

lunes, 1 de abril de 2019

Eratóstenes fue sólo el primero

por Guillermo E. Mulvihill

Una muy breve historia de las mediciones de la Tierra.
Una constante en el discurso terraplanista es que el método usado por Eratóstenes no es válido como medida del diámetro de la Tierra, con una larga serie de excusas:

  • Sobre la distancia entre Alejandría y Siena (hoy Asúan), que no pudo calcularse con precisión, por el método del camellero, el esclavo o los soldados. Que las unidades de medida no están bien definidas y no se sabe si eran estadios romanos o griegos.
  • Sobre el ángulo de la sombra proyectada, que falta mención al método que se usó para medirlo.
  • Que en esa época y a esa distancia, era imposible hacer las dos mediciones simultáneamente (como si hiciera falta una precisión de milésimas de segundo)
  • Sobre los tres puntos anteriores, que no hay registro histórico.Que las dos ciudades no están en el mismo meridiano, lo que afectaría tanto la simultaneidad de la medición como la medición misma, y luego obviamente el cálculo.
  • Algún etcétera que seguramente esté olvidando, o alguno que estén pensando.

Luego, como agregado final a la lista de objeciones al método, sugieren que la interpretación de Eratóstenes bien podría estar equivocada ya que se podría observar el mismo fenómeno partiendo de la hipótesis de una Tierra plana y un Sol cercano.



Y todo ésto, por supuesto, desoyendo y desestimando que la hipótesis de Eratóstenes de una Tierra esférica y un Sol lejano estaban avaladas por otras observaciones de la astronomía helenística. Dos siglos antes de Eratóstenes, Filolao de Tarento argumentó sobre la esfericidad de la Tierra basado en distintas observaciones, y unas décadas antes de Eratóstenes, Aristarco de Samos estimó la lejanía del Sol con un método de triangulación sobre el sistema Sol-Tierra-Luna.

Otra cosa que parecen entender los terraplanistas, es que la medición de Eratóstenes se asume y se toma como dogma desde esa época. Creen que la falta exactitud en la descripción de los métodos de medición la encasillaría en la categoría de mito. Creen que el cuestionamiento histórico y la larga lista de objeciones derivadas les sirven para derrumbar el hecho de la esfericidad terrestre y su tamaño.

Dejando de lado los aspectos históricos, los terraplanistas también desoyen que el método de medición de Eratóstenes puede replicarse hoy, con toda la tecnología que permitiría tanto la precisión como la simultaneidad de la mediciones, con prácticamente el mismo resultado obtenido hace casi 2300 años atrás. Desoyendo además de que la hipótesis de la Tierra plana y el Sol cercano se derrumba en cuanto agregamos al método de medición un gnomon o más. No puede triangularse un Sol cercano con tres sombras.

Y dejando además de lado toda cuestión sobre esta discusión, algo que parece que desconocen los terraplanistas es que la medición de Eratóstenes del año 230 a.C. no fué la única que se hizo sobre la morfología terrestre. Después de casi 2300 años de historia, sería naif pensarlo. Reveamos algunas pocas, las más significativas.

Al-Biruni


Abū 'r-Raihān Muhammad ibn Ahmad al-Bīrūnī

Fué uno de los más grandes pensadores del mundo islámico. Matemático, astrónomo y filósofo persa (973 - 1048). Hizo muchas contribuciones en muchos campos del saber, por ejemplo, la regla de tres que sirve para resolver problemas de proporcionalidad. Al igual que Eratóstenes, ideó su propio método para medir la circunferencia de la Tierra, sin mucho más instrumental que el de su propio cerebro, sólo que un poco más complicado.

Una de sus contribuciones fue el método de medir alturas a partir de dos puntos de observación distintos cuya distancia de separación es dato. En particular Al-Biruni midió una montaña



Puede demostrarse que:


Una vez conocida la altura de la montaña, viene la segunda parte del experimento. Hay que subir a la cima y determinar el ángulo de depresión con respecto al horizonte astronómico.




El triángulo PAO es rectángulo en P, por lo que desarrollando se puede llegar a que



Al-Biruni midió una montaña cerca de Nandana, en India , y que estimó el radio de la Tierra en 6336 km. Muy cerca del valor real.



Desgraciadamente la medición de Al-Biruni es susceptible del mismo cuestionamiento que la medición de Eratóstenes, ya que se desconocen los instrumentos que usó (se especula que un astrolabio, que en esa época tenía una precisión de un cuarto de grado). Hay una dificultad también en determinar el ángulo del horizonte, que radica en la visibilidad que permite la atmósfera o algún accidente geográfico. Pese a las dificultades y a las objeciones que puedan presentar los “escépticos” terraplanistas, es un método de medición válido y puede replicarse por cualquiera, se suma a la lista junto con la medición de Eratóstenes, y sigue siendo uno de los tantos.



Geodesia
Después de las estimaciones anteriores y antes de la tecnología moderna como GPS o de las telecomunicaciones inclusive, muchas de las mediciones que se hicieron posteriormente sobre la forma de la Tierra comparten un elemento común: el desarrollo de la topografía y la geodesia. Antes de ver las siguientes mediciones es necesario hacer un breve repaso histórico.


Gemma Frisius


Se podría decir que toda la topografía y geodesia está basada en el método desarrollado por éste matemático y astrónomo holandés, que fué mentor de Gerardus Mercator (sí, el de la Proyección Mercator). El método es de la triangulación y es el corazón de la topografía.

En resumen, el método de triangulación consiste en reconocer sobre el terreno una serie puntos significativos como elevaciones o depresiones que servirán de vértices, marcarlos y delimitar el terreno en una serie de triángulos. Para hacerlo se resuelve un primer triángulo sobre el terreno, midiendo sus distancias y los ángulos verticales y horizontales, una vez resuelto el primer triángulo, éste sirve de base para los siguientes.

Es necesario para el método de triangulación primero precisión en las mediciones, y segundo conocimientos de álgebra, geometría plana y trigonometría. Todo un reto para los terraplanistas, pero no inalcanzable.


En 1533, Gemma Frisius propuso utilizar la triangulación para posicionar con precisión lejanos lugares para la creación de mapas. Ejerció una gran influencia, y la técnica se extendió a través de Alemania, Austria y los Países Bajos. El astrónomo Tycho Brahe aplicó el método en Escandinavia, completando una triangulación detallada en 1579 de la isla de Hven, en el que se basa su observatorio, en relación con puntos de referencia clave, produciendo un plan topográfico de la isla en 1584.



A pesar de ser un método desarrollado en el siglo XVI, la triangulación topográfica 
se sigue usando al día de hoy, con la diferencia obvia de los instrumentos usados.


Triangulación topográfica de Los Países Bajos.

Willebrord Snellius


Aunque se lo conoce más por la Ley de refracción que lleva su nombre (Ley de Snell), en 1617 el holandés Willebrord Snellius calculó la distancia entre la ciudad de Alkmaar, sede del mercado del queso más importante de Holanda, y Bergen-op-Zoom, a exactamente un grado de meridiano terrestre más al sur. Snellius unió las dos ciudades con una serie de 33 triángulos adyacentes de los cuales calculó las medidas hasta lograr la estimación de la distancia de un grado de meridiano (con un error que sabemos ahora fue de solo un 3%). La medida de Snellius proporcionó de hecho la primera estimación de la circunferencia de la tierra (38500 km) tomada directamente sobre la superficie terrestre.

El gran aporte de Snellius a la triangulación topográfica fué demostrar que se puede calcular la posición de un punto dentro de un triángulo mediante el trazado de los ángulos desde los vértices al punto incógnita. Este método se conoce como resección.




Conocidas las distancias a tres puntos P1, P2, P3 y sus coordenadas, mediante
trigonometría, se puede determinar las coordenadas del punto B del observador.
Estas visuales podrían ser medidas con mucha más precisión que los vértices geodésicos, que dependían de la lectura de una brújula. Esto estableció la idea clave para establecer la topografía de una red primaria a gran escala. De hecho, la triangulación geodésica perfeccionada con la resección fué utilizada para mediciones de precisión hasta la aparición de la red mundial de satélites en 1980.

Jean Picard


Miembro de La Académie Royal des Sciences de París fundada en 1666, hacia el año 1670 halló cuánto medía un grado de meridiano midiendo por triangulación el arco de París entre Malvoisine (al sur de París) y la torre del reloj de Sourdon (al sur de Amiens) y determinó el radio terrestre en 6329 km. Una diferencia del 0,44% lo separa del valor que se conoce hoy.

¿Elipsoide oblato o elipsoide prolato?
Una cuestión sobre la que no había consenso en el ámbito científico era la de la verdadera forma de la Tierra. Había dos grandes corrientes filosóficas.

Resulta que otro francés, contemporáneo de Picard y miembro además de La Académie Royal des Sciences, era el Director del Observatorio de París, Jacques Cassini, partidario de las ideas de Descartes, que ya gozaba de renombre en toda Europa como filósofo, geómetra y especialista en matemática aplicada. Según la filosofía cartesiana la forma de la Tierra era la de un elipsoide prolato (radio ecuatorial menor, alargado en el sentido del eje de rotación, como un huevo).

Cruzando el Canal de la Mancha, en Inglaterra, estaba nada menos que Isaac Newton, miembro de la Royal Society con su recién estrenada Philosophiæ naturalis principia mathematica. La aplicación de la Teoría de Gravitación llevó a pensar que la Tierra era un elipsoide de revolución achatado por los polos y más abultado en la línea del ecuador, a consecuencia de las fuerzas centrífugas: un elipsoide oblato. Newton trata el problema de la figura de la Tierra en las proposiciones XVIII, XIX y XX de su obra.

De manera que el interés por la mediciones geodésicas aumentó considerablemente. Si antes tenían una motivación de precisión cartográfica, pasaban en ese momento a ser una cuestión de orgullo nacional.

Para zanjar las disputas intelectuales se debían tener pruebas. Si la Tierra era un elipsoide prolato, un arco de meridiano debía ser más corto cerca del ecuador que en los polos. Si por el contrario la Tierra era un elipsoide oblato, un arco de meridiano debería ser más largo cerca del ecuador y más corto cerca de los polos.

Elipsoide prolato con arcos de meridiano de 7,5 grados.
Elipsoide oblato con arcos de meridiano de 7,5 grados.
Misión geodésica francesa
La controversia llegó a tal punto que se pudo convencer al rey Luis XV y a su ministro naval para que financiara expediciones (uno de los pretextos fué la posibilidad de abrir nuevas rutas comerciales, no era todo en pos de la ciencia).

La academia parisina resolvió por un lado mandar en 1735 una expedición geodésica a la colonia española del Perú ecuatorial (La Condamine, Luis Godín, Pedro Bouguer), y por el otro se mandó una expedición a Laponia (Pierre Louis Maupertuis con la colaboración del sueco Anders Celsius), cerca del círculo polar ártico, en 1736. Después de un tiempo y una triangulación que abarcó un arco de meridiano de sólo tres grados de latitud, y desgraciadamente para Cassini y los partidarios de la hipótesis cartesiana los resultados de las mediciones geodésicas daban indicios favorables a las predicciones newtonianas. (Ver más)

Sellos postales conmemorativos a las mediciones sobre los meridianos.

Trazado geodésico en Quito, Ecuador
Nota para terraplanistas: Cabe destacar en éste punto que las mediciones fueron objetivas. Fueron los mismos franceses encargados de las mediciones los que dieron las pruebas a favor del otro bando. El motivo principal de las expediciones era las de buscar la verdad, las mediciones no se adulteraron en favor de una postura u otra, como corresponde al verdadero método científico.

Desde la antigüedad se sabía que la Tierra era una casi esfera y se habían ideado métodos para medir su radio. Ahora además se contaba con evidencia de que la Tierra era achatada por lo polos y que su radio polar era menor que el radio ecuatorial.

Arco geodésico de Struve

Por supuesto la historia de la geodesia siguió, con el aporte de muchas personalidades de la ciencia, ampliando la red de triángulos y afinando la precisión con la evolución de las herramientas al adaptar instrumentos astronómicos como telescopios para hacer las mediciones, o la construcción de otros específicamente diseñados . Todo ésto mayormente en el ámbito de la cartografía y la precisión de los mapas.

En el ámbito científico y para afinar todas las mediciones sobre la morfología terrestre que se habían realizado anteriormente, el astrónomo alemán Friedrich Georg Wilhelm von Struve propuso un gigantesco trabajo de triangulación. El resultado de esa propuesta fué la primera medición precisa de un largo segmento del meridiano terrestre y demostración fehaciente de que la Tierra es achatada en sus polos.
Friedrich Georg Wilhelm von Struve
El trabajo fue titánico. Es la única y la primera vez que ha sido aceptada una candidatura topográfica que cruza diez países: Noruega, Suecia, Finlandia, Federación rusa, Estonia, Letonia, Lituania, Bielorrusia, Moldavia y Ucrania. Entre 1816 y 1855 distintos equipos realizaron un conjunto de triangulaciones que se extiende a lo largo de 2820 km, desde Hammerfest (Noruega) hasta el Mar Negro. El arco original tiene 258 triángulos principales con 265 puntos geodésicos de los que 34 son hoy un monumento declarado Patrimonio de la Humanidad por la UNESCO en 2005.

El nodo norte del Arco de Struve, marcado por un obelisco conmemoratico en Fuglenaes, Noruega. La fotofrafía de F. Bandarin - Centro del Patrimonio Mundial de la UNESCO

Un ejemplo extraordinario de colaboración científica entre científicos de diferentes nacionalidades y asimismo de colaboración entre distintas monarquías, unidas por una misma causa científica.


Sobre la base de las mediciones efectuadas por los geodésicos en sus mediciones terrestres se estableció que el radio ecuatorial de la tierra era 6.378.361 metros, que es tan solo 224 metros más largo del que podemos determinar con las técnicas de medición avanzadas de hoy día.


Ruta de triangulación del arco geodésico de Struve. Los 34 puntos rojos corresponden a los sitios registrados como Patrimonio de la Humanidad.

Anexo: mediciones del tamaño de la Tierra:

Fecha
Observador
Lugar
Longitud del arco (grados)
Distancia de 1º (metros)
Primeros métodos
230 a.C
Eratóstenes
Egipto
7º 12'
128500
100 a.C
Posidonio
Egipto
7º 30'
107292
Siglo V
Aryabhata
India
-
111022
724
I Hising
China
32º
157520
820
Al Mamun
Iraq
111000
Siglo IX
Alfraganus
Siria

113036
1017
Al-Biruni
India/Pakistán
-
110040
1525
Fernel
Francia
110600
1580
Tycho Brahe
Suecia
22º
112840
Introducción de la triangulación
1515-16
Snellius
Holanda
1º 12'
107400
1633
Norwood
Inglaterra
2º 28'
111920
1645
Riccioli&Grimaldi
Francia
1º 23'
111210
1681-1701
Cassini II
Francia
6º 19'
110010
1736-37
Maupertuis
Letonia
1º 12'
111950
1739-40
Cassini III - La Caille
Francia
8º 30'
111240
1734-42
Cassini II & III
Francia
8º 20'
111210
1735-1745
La Condomine
Perú
3º 07'
110655
1751
Boscovish & Maire
Italia
2º 10'
111027
1752
La Caille
Sudáfrica
1º 13'
111165
1766
Maison & Dixon
América
110670
1769
Liesganig
Hungría
110863
1791-99
Delambre & Mechain
Francia
9º 40'
111113
1801-03
Svanberg
Suecia
111475
1800-21
Lambton
India
15º 58'
110601
1820-30
Everest I
India
15º 58'
110634
1823-43
Everest II
India
21º 21'
110759
1816-55
Struve
Diez países
25º 20'
110837



Bibliografía y referencias
Wegner, Steven - Explicar el mundo - 2015.
Brotton, Jerry - HISTORIA DEL MUNDO EN 12 MAPAS - 2016.
Ecuador y Francia : diálogos científicos y políticos (1735-2013) - 2013.
Pep Vañó Piedra (Departamento de Física y Química IES Andreu Sempere (Alcoi)) - Arco geodésico de Struve
Página de la UNESCO sobre el arco geodésico de Struve.

24 comentarios:

  1. Respecto del valor del ángulo en el ensayo de Eratosthenes, yo creo que no necesariamente tubo que medirlo.

    En realidad es 50 el valor buscado (360/7.2), que es la cantidad de veces que entra el arco de sombra en una circunferencia de radio = (longitud de la vara).

    Y para estimar este valor, el instrumento de precisión necesario es ... un trozo de cuerda.

    Salu2

    ResponderBorrar
    Respuestas
    1. Hola lukas. En realidad no hay registros ni consenso de cómo exactamente obtuvo el ángulo. La versión más aceptada es la del historiador Cleomedes que dijo que midió la relación del largo de la sombra que proyectaba un gnomon, con su altura, pero es un dato irrelevante, el quid es que el método es válido y puede ser repetido por cualquiera, y llegar al mismo resultado de hace casi 2300 años.

      Borrar
  2. Hola, he estado leyendo este blog desde que lo encontré ayer, despues de tres semanas dudando de la forma de la tierra, y ultimamente decantado por la esfera debido a las rutas de vuelos transantarticos, que aunque pocos, los hay a dia de hoy, cosa que los TP simplemente niegan, de momento no he visto una buena explicación. Pero dejando de lado eso, dejo por aqui una de mis mayores dudas, sobre el cálculo de eratostenes, que daba por hecho que los rayos solares caen en paralelo, sin embargo se supone que hay una refracción atmosferica de la luz, que se supone que es la razón por la que podemos ver cosas mas allá del horizonte geométrico, el tipico ejemplo de los barcos vistos con zoom se camara, la cual si fue mi primera duda seria para plantearme una tierra plana. Alguien podria explicarme el tema de la refraccion atmosferica de la luz en los calculos de eratostenes? Por que no se menciona entre sus errores? Y la refracción en si, como puede hacer diverger los rayos a los bordes de la esfera, siendo la atmosfera de forma convexa? No deberian converger? Gracias de antemano a cualquier respuesta aclaratoria, aunque ninguna me agradaria mas que la del dueño de este Blog. Tengan buen dia

    ResponderBorrar
    Respuestas
    1. El experimento de Eratóstenes fue realizado al mediodía. Al caer los rayos perpendicularmente a la superficie terrestre, no hay refracción.

      Borrar
    2. En el caso de Alejandría además, en el que los rayos del Sol no entran perfectamente perpendiculares sino con una inclinación de 7,12º,la refracción que produce la atmósfera es inapreciable. Tené en cuenta que el vacío, en donde no hay no hay refracción, tiene por definición un índice de refracción de 1. El aire en CNPT tiene un índice de 1,0002926, o sea prácticamente lo mismo que el vacío.

      Borrar
    3. Para cálculos dentro de la atmósfera no son perpendiculares, para cálculos fuera llegan perpendiculares? Es asi? La atmósfera es tipo prisma por así decirlo?

      Borrar
    4. La luz viaja en línea recta y desvía su trayectoria cuando pasa de un medio a otro: ésto es básicamente refracción. Cómo se refracta dependerá del medio y de su índice de refracción. Es física elemental.

      Borrar
  3. Y pensar que todavía hay gente que creen que la Tierra es plana

    ResponderBorrar
  4. Aristarco de Samos estimó la lejanía del Sol con un método de triangulación sobre el sistema Sol-Tierra-Luna.

    Le adjudicó el ángulo recto al vértice lunar...como llego a esa conclusión?

    ResponderBorrar
    Respuestas
    1. Fácil: si un observador ve la Luna exactamente en cuarto creciente o menguante, es porque está en el mismo plano de iluminación del Sol. Como el Sol incide perpendicular al plano de iluminación, se sigue que el ángulo cuyo vértice es la luna es de 90°. Para saber más: https://refutandotp.blogspot.com/2020/07/como-se-midio-el-sistema-solar-sin-la.html

      Borrar
    2. Gracias por las respuestas. Voy a que el ángulo sol tierra luna...también seria recto de 90 al estar en el mismo plano? Debería ser curvo...90 alguno de los 2 vértices (luna o tierra) y el otro 89.999. O ambos iguales pero no de 90.

      Borrar
    3. Los diagramas que están en la entrada que te comenté te pueden ayudar a visualizarlo, igual que la lectura. El Sol alumbra siempre media Luna, pero nosotros no vemos nunca toda la parte iluminada. El plano de iluminación corta a la Luna en dos semiesferas, entonces si vemos la Luna exactamente en cuarto menguante o creciente (o sea vemos solo la mitad de la parte iluminada) es porque estamos también en ese mismo plano de iluminación. Como el Sol incide perpendicular a ese plano de iluminación, nuestra posición, la Luna y el Sol forman un ángulo recto.

      Borrar
    4. Claro... también lo formarían el ángulo recto la luna, nuestra posición y el sol por los mismos motivos.

      Borrar
    5. No. Si el Sol es perpendicular al plano de iluminación de la Luna e incide directamente a 90° de ésta, no puede a la vez estar a 90° del observador. Mira los diagramas de la entrada que comenté más arriba.

      Borrar
  5. Es raro que Al-Biruni no calculará la altura, distancia, al sol con su método de medir montañas

    ResponderBorrar
    Respuestas
    1. No es raro si pensás que el ángulo entre las dos visadas es ínfimo. El paralaje solar medio observado desde la Tierra es de solamente 8 segundos de arco, y para medirlo hay que desplazarse desde el ecuador a uno de los polos.

      Borrar
    2. Ya mucho no lo capto, seguramente tenga que ver con la respuesta a la otras otras preguntas que realice. Gracias por contestar. Veo que más no me parece y vuelvo a preguntar.

      Borrar
    3. Hablo de que el Sol está tan lejos que si estás en una posición y medís el ángulo que tiene, tendrías que moverte 6350 kilómetros para detectar un ángulo de apenas 8 segundos de arco. Es lo que se puede ver por las ventanillas cuando estamos viajando: los objetos más cercanos cambian su posición aparente más rápido que los que están más lejos. El Sol está tan lejos que no cambia su posición aparente, así que es prácticamente imposible triangular su posición con el método de Al Biruni.

      Borrar
    4. Excelente, no se podría medir la distancia al sol con trigonometría...lados y ángulos de un triángulo entonces por los motivos que me comentas entiendo.

      Borrar
    5. No dije eso, dije que no se puede medir la distancia al Sol con el método de Al Biruni. Pero si con otros métodos que usan trigonometría como por ejemplo el tránsito de Venus o uno muy sencillo y muy aproximado como el que figura en ésta entrada https://refutandotp.blogspot.com/2020/07/como-se-midio-el-sistema-solar-sin-la.html

      Borrar
  6. Lo digo por el primer dibujo del sol y los ángulos en la superficie entre Alejandría y Siena de este artículo. Yo hago esa triangulación....que sería como la de Al Biruni en definitiva, con datos reales y me da distancia al sol entre 4500 y 5500km...pero me aclaraste que "es prácticamente imposible triangular su posición con el método de Al Biruni". Creo que ese primer dibujo lo usaron para decir que es esférica, pero si no da la distancia, altura, al sol...debe estar errado por otros lados también.

    ResponderBorrar
    Respuestas
    1. "Lo digo por el primer dibujo del sol y los ángulos en la superficie entre Alejandría y Siena de este artículo."

      Ese dibujo no ilustra la realidad sino justamente la mala interpretación que hacen los terraplanistas.

      "Yo hago esa triangulación....que sería como la de Al Biruni en definitiva, con datos reales y me da distancia al sol entre 4500 y 5500km"

      No, no es ese el método de Al Biruni y no estás entendiendo cómo se aplica. Es falso que hayas llegado a un resultado de 4500~5000 km usando ese método por el simple hecho de que uno de los datos es un ángulo de 90°, y la tangente de 90° no está definida.


      "...pero me aclaraste que "es prácticamente imposible triangular su posición con el método de Al Biruni". "

      Exacto, no se puede triangular el Sol con Al Biruni. Se usan otros métodos.

      "Creo que ese primer dibujo lo usaron para decir que es esférica, pero si no da la distancia, altura, al sol...debe estar errado por otros lados también."

      Aclarado más arriba: es una mala interpretación terraplanista. No hay Sol cercano y Tierra plana. Se sabía desde hace muchos años antes que el Sol estaba muy lejos (justamente por Aristarco de Samos) y también se sabía que la Tierra era esférica por los argumentos de Filolao de Tarento, Aristóteles (de caelo), etc.

      Borrar

Comentarios soeces, insultos, amenazas, etc. Serán rechazados. Tienes libertad para publicar, pero no debes desperdiciarla.

Comentarios anónimos podrán ser publicados pero no serán respondidos.